Copyright
©The Author(s) 2021.
World J Gastroenterol. Oct 14, 2021; 27(38): 6476-6488
Published online Oct 14, 2021. doi: 10.3748/wjg.v27.i38.6476
Published online Oct 14, 2021. doi: 10.3748/wjg.v27.i38.6476
Characteristic | n (%) |
Age, years, median (IQR) | 36 (25-50) |
Sex | |
Female | 76 (52) |
Male | 70 (48) |
Smoker (active) | 33 (23) |
CD behavior | |
B1: Non-stricturing, non-penetrating | 75 (51) |
B2: Stricturing | 56 (38) |
B3: Penetrating/fistulizing | 15 (10) |
CD location | |
L1: Ileal | 41 (28) |
L2: Colonic | 43 (29) |
L3: Ileocolonic | 62 (42) |
L4: Isolated UGI | 0 (0) |
Perianal involvement | 20 (21) |
Initial anti-TNF commenced | |
Infliximab | 84 (58) |
Adalimumab | 62 (42) |
Baseline thiopurine | 99 (68) |
Baseline methotrexate | 27 (18) |
Baseline corticosteroids | 64 (44) |
Baseline aminosalicylates | 48 (33) |
Prior anti-TNF | 22 (15) |
Prior intestinal surgery | 41 (28) |
Disease duration, yr, median (IQR) | 5 (1-12) |
Baseline investigations | |
CRP, mg/L, median (IQR) | 3 (2-8) |
Albumin, g/L, median (IQR) | 37 (36-41) |
- Citation: Con D, van Langenberg DR, Vasudevan A. Deep learning vs conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study. World J Gastroenterol 2021; 27(38): 6476-6488
- URL: https://www.wjgnet.com/1007-9327/full/v27/i38/6476.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i38.6476