Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. Oct 14, 2021; 27(38): 6399-6414
Published online Oct 14, 2021. doi: 10.3748/wjg.v27.i38.6399
Table 3 Summary of studies focused on artificial intelligence applications for automatic polyp detection, classification, and segmentation
Study
Screening test
Imaging modality
Data type
AI-based algorithm
Contribution
Acc
Sen
Spe
Wimmer et al[46]ColonoscopyWL, NBIImagesk-nearest neighboursPolyp classification: non-neoplastic, neoplastic80%--
Tajbakhsh et al[22]ColonoscopyWLImagesDecision trees; Random forestAutomatic polyp detection-88%-
Hu et al[21]CT ColonographyGreyscaleImagesRandom forestPolyp classification: non-neoplastic, neoplastic---
Zhang et al[50]ColonoscopyWL, NBIImagesCNN: CaffenetPolyp detection and classification: benign from malignant86%88%-
Shin et al[23]ColonoscopyWLImagesSupport vector machineWhole image classification: polyps from non-polyps96%96%96%
Sánchez-González et al[32]ColonoscopyWLImagesRandom forest; CNN: BayesnetPolyp segmentation97%76%99%
Tan et al[52]CT ColonographyGreyscaleImagesCustomized CNNPolyp classification: adenoma from adenocarcinoma87%90%71%
Fonolla et al[51]ColonoscopyWL, NBI, LCIImagesCNN: EfficientNetPolyp classification: benign from pre-malignant95%96%93%
Hwang et al[46]ColonoscopyWLImagesCustomized CNNPolyp detection and segmentation---
Park et al[53]ColonoscopyWLImagesCustomized CNNWhole image classification: normal, adenoma and adenocarcinoma94%~94%-
Viscaino et al[54]ColonoscopyGreyscaleImagesSupport vector machine; Decision treesk-nearest neighbours; Random forestWhole image classification: polyp and non-polyp97%98%96%