Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Oct 7, 2021; 27(37): 6191-6223
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Table 7 Artificial intelligence applications in hepatology: Treatment
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Wübbolding et al[133]Analyze soluble immune markersSeveral28/497 HBV patientsPrediction of early virological relapse0.73-0.892,6, 0.59-0.672,7
Haga et al[134]WGS of HCV Several86/87 HCV patientsClassification of HCV variants resistant to antiviral drugs0.5-0.9372,5, 0.597-0.9542,6
Bedon et al[135]DNA methylation profilingRF-based300/74 HCC specimens6-mo progression-free survival67.1-80.61,5, 64.8-80.21,7
Tsilimigras et al[137]Laboratory results, clinicopathological parameters, tumor characteristicsCART976 HCC patientsDetermining factors of prognostic weigh preoperatively within the BCLC staging system---
Tsilimigras et al[139]Laboratory results, clinicopathological parameters, tumor characteristicsCART1146 CCA patientsDetermining factors of prognostic weigh preoperatively---
Jeong et al[140]Laboratory results, clinicopathological parametersDNN1421/2347Intrahepatic CCA susceptible to adjuvant therapy following resection0.842,5, 0.782,7
Shao et al[141]Clinicopathological parametersANN288 CCA patients (training:validation = 8:2)Predict early occlusion following bilateral plastic stent placement0.96482,5, 0.95442,6