Copyright
©The Author(s) 2021.
World J Gastroenterol. Oct 7, 2021; 27(37): 6191-6223
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Table 3 Artificial intelligence applications in gastroenterology: Treatment
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Rogers et al[86] | Data from baseline impedance, nocturnal baseline impedance, and acid exposure time | DT | 335 patients | Prediction of treatment response with proton pump inhibitors for patients with gastroesophageal reflux disease | 0.31-0.9382,6 |
Zhu et al[87] | Endoscopic images | CNN | 790/2037 images | Invasion of gastric cancer at the mucosa and submucosa layers of the stomach | 89.161,7, 0.942,7, 76.473,7, 95.564,7 |
Kubota et al[88] | Endoscopic images | DNN | 800/90 images | Invasion depth of gastric cancer | 64.71,6 |
Yamashita et al[89] | Hematoxylin and eosin-stained WSI | DNN | 100/156/4847 | Identificication of CRC microsatellite instability | 0.9312,6, 0.7792,7, 763,7, 66.64,7 |
Ichimasa et al[90] | Laboratory results, clinicopathological parameters | SVM | 590/1007 | Prediction of lymph node metastasis status | 691,7, 0.8212,7, 1003,7, 664,7 |
Levi et al[91] | Laboratory results, clinicopathological parameters | RFE | 14620 patients | Prediction of the need for transfusion following GIB | 50.21-74.881,6, 0.7858-0.81412,6, 69.17-92.773,6, 35.02-79.824,6 |
Chu et al[92] | Laboratory results, clinicopathological parameters | Several | 122/67 patients | Prediction of the source of GIB | 69.7-94.31,6, 0.658-0.9992,6, 90.1-98.03,6, 89-1004,6 |
Prediction of the need for blood resuscitatio | 64.7-94.11,6, 0.381-0.9932,6, 90.3-93.93,6, 18.4-95.54,6 | ||||
Prediction of the need for emergent endoscopy | 62.7-83.31,6, 0.404-0.9132,6, 80.1-89.13,6, 13.8-85.74,6 | ||||
Prediction of disposition | 58.4-89.71,6, 0.324-0.9722,6, 81.9-92.93,6, 18.4-90.94,6 | ||||
Das et al[93] | Laboratory results, clinicopathological parameters | ANN | 194/1936/2007 patients | Prediction of major stigmata of recent hemorrhage | 891,3,4,6, 771,7, 963,7, 634,7 |
Prediction of the need for emergent endoscopy | 811,3,6, 611,7, 943,6, 824,6, 484,7 | ||||
Augustin et al[94] | Laboratory results, clinicopathological parameters | CART | 164/1037 patients | Stratification of risk of rebleeding and mortality following acute variceal hemorrhage | 0.81-0.832,7 |
Loftus et al[95] | Laboratory results, clinicopathological parameters | ANN | 103/44 patients | Prediction of severe lower GIB | 0.9792 |
Prediction of the need for surgical intervention | 0.9542,6 | ||||
Ayaru et al[96] | Laboratory results, clinicopathological parameters | GB | 170/1307 | Prediction of severe lower GIB | 781,6, 831,7 |
Prediction of recurrent bleeding | 881,6, 881,7 | ||||
Prediction of the need for intervention | 881,6, 911,7 |
- Citation: Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37): 6191-6223
- URL: https://www.wjgnet.com/1007-9327/full/v27/i37/6191.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i37.6191