Copyright
©The Author(s) 2021.
World J Gastroenterol. Oct 7, 2021; 27(37): 6191-6223
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Leung et al[27] | Laboratory results, clinicopathological parameters | Several | 64238/25330 patients | Risk of gastric cancer development following H.pylori eradication | 0.53-0.972,6, 59.3-98.13,6, 51.5-93.64,6 |
Nakahira et al[28] | Laboratory results, clinicopathological parameters, endoscopic images | CNN | 7826/454 patients | Stratify risk of gastric cancer development | --- |
Taninaga et al[29] | Laboratory results, clinicopathological parameters, endoscopic images | CART | 1144/287 | Prediction of future gastric cancer | 63.4-94.81,6, 0.736-0.8742,6 |
Goshen et al[31] | Laboratory results, clinicopathological parameters | DT, RF, GB | 688 flagged patients | High risk of CRC development | ---- |
- Citation: Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37): 6191-6223
- URL: https://www.wjgnet.com/1007-9327/full/v27/i37/6191.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i37.6191