Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. Sep 21, 2021; 27(35): 5908-5918
Published online Sep 21, 2021. doi: 10.3748/wjg.v27.i35.5908
Table 2 Summary of the per-polyp results of studies on convolutional neural network algorithms for the optical diagnosis of colorectal polyps (cross-validation results not included)
Ref.
Image Modality (testing)
Sensitivity (%)
Specificity (%)
PPV (%)
NPV (%)
Accuracy for neoplasia (%)
PIVI 1 achieved (%)
PIVI 2 achieved (%)
Komeda et al[37]Not specified----70--
Chen et al[25]Magnified NBI96.378.189.691.590.1-Yes (91.5)
Byrne et al[23]NBI-NF9883909794-Yes (97)
Zachariah et al[26]NBI---96.593.1Yes (98.3)Yes (96.5)
WLI---88.992.8Yes (90.8)No (88.9)
Ozawa et al[38]1NBI97-8488---
WLI98-8588---
Jin et alNBI-NF83.391.793.378.686.7--
Song et al[39]NBI-NF (test set 1)84.17488.367.7---
NBI-NF (test set 2)88.572.188.684.7---
Rodriguez-Diaz et al[28]NBI-NF (90%) + NBI (10%)9588-93-Yes (94 (20/90 LC))Yes (98 (6/68 LC))
van der Zander et al[27]WLI + BLI95.693.397.787.595.0-No (87.5)