Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Aug 28, 2021; 27(32): 5306-5321
Published online Aug 28, 2021. doi: 10.3748/wjg.v27.i32.5306
Table 4 Key characteristics of the main studies using radiomics and machine learning algorithms on computed tomography for v prediction tasks
Ref.Study design (n of sites)Number of patientsPrediction taskCT phase (n of CT scanner)Segmentation methodML algorithmData powering algorithmValidationPerformance
Bibault et al[85], 2018Retrospective (3)99pCR after nCRTUnenhanced (3)Manual – 3DDNNRadiomics and clinical featuresInternal validation (cross-validation)AUC: 0.72
Hamerla et al[86], 2019Retrospective (1)169pCR after nCRTUnenhanced (1)Manual – 3DRFRadiomics featuresInternal validation (cross-validation)Accuracy: 0.87
Yuan et al[87], 2020Retrospective (1)91pCR after nCRTUnenhanced (1)Manual – 3DRFRadiomics featuresInternal validation (train/validation split)Accuracy: 0.84
Wu et al[90], 2019Retrospective (1)102MSI statusVenous phase - DECT (2)Manual - 3 2D ROIs for lesionLRRadiomics featuresInternal validation (train/validation /test split)AUC: 0.87
Fan et al[91], 2019Retrospective (1)100MSI statusPortal venous phase (2)Semiautomatic – 3DNBRadiomics featuresInternal validation (cross-validation)AUC: 0.75
Wu et al[92], 2020Retrospective (1)173KRAS mutationPortal venous phase (3)Manual + DL – single 2D ROILRRadiomics featuresInternal validation (train/test split)C-index: 0.83
Wang et al[94], 2019Retrospective (1)411Prediction of survivalUnenhanced (1)Manual – 3D10-F CVRadiomics and clinical featuresInternal validation (cross-validation)C-index: 0.73