Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Aug 28, 2021; 27(32): 5306-5321
Published online Aug 28, 2021. doi: 10.3748/wjg.v27.i32.5306
Table 2 Key characteristics of the main studies using radiomics and machine learning algorithms on magnetic resonance images to predict pathologic complete response after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer
Ref.
Study design (n of sites)
Number of patients
Definition of pCR
MRI field strength (n of scanners)
MRI timing
MRI sequence
ML algorithm
Data powering algorithm
Validation
Performance (AUC)
Antunes et al[59], 2020Retrospective (3)104TRG 0 according to AJCC1.5 and 3 T (> 10)Pre-nCRTT2wRFRadiomics featuresExternal validation0.71
Ferrari et al[106], 2019 Retrospective (1)55TRG 4 according to Dowrak-Rodel3 T (1)Pre-, mid- and post-nCRTT2wRFRadiomics featuresInternal validation (train/test split)0.86
Horvat et al[107], 2018Retrospective (11)114ypT0N01,5 and 3 T (4)Post-nCRTT2wRFRadiomics featuresInternal validation (cross-validation)0.93
Nie et al[108], 2016Retrospective (1)48ypT0N03 T (1)Pre-nCRTT2w, DWI, pre and post-contrast T1wANNRadiomics featuresInternal validation (cross-validation)0.84
Petkovska et al[109], 2020 Retrospective (11)1022ypT0N01,5 and 3 T (4)Pre-nCRTT2wSVMRadiomics and semantic featuresInternal validation (train/test split)0.75
Shaish et al[110], 2020 Retrospective (2)132ypT0N01,5 and 3 T (multiple3)Pre-nCRTT2wLRRadiomics featuresInternal validation (train/test split)0.80
Shi et al[111], 2019 Retrospective (1)51TRG 0 according to Ryan3 T (1)Pre- and mid-Ncrt4T2w, DWI, pre- and post-contrast T1wCNNRadiomics featuresInternal validation (cross-validation)0.83
van Griethuysen et al[60], 2019Retrospective (2)133ypT0/TRG1 according to Mandard1,5 T (3)Pre-nCRTT2w and DWILRRadiomics featuresExternal validation0.77
Yi et al[112], 2019Retrospective (1)134ypT0N01,5 and 3 T (2)Pre-nCRTT2wSVMRadiomics, clinical and semantic featuresInternal validation (train/test split)0.88