Copyright
©The Author(s) 2021.
World J Gastroenterol. Jan 21, 2021; 27(3): 281-293
Published online Jan 21, 2021. doi: 10.3748/wjg.v27.i3.281
Published online Jan 21, 2021. doi: 10.3748/wjg.v27.i3.281
Table 1 Patient and lesion characteristics in the validation image set
Patient characteristics, n = 112 | Value |
Median age, yr (range) | 59 (19-86) |
Sex, male/female | 67/45 |
Lesion characteristics, n = 42 | |
Median size, mm (range) | 23 (9-42) |
Location, Ce/Ut/Mt/Lt/Ae | 0/3/24/15/0 |
Pathological diagnosis | |
LGIN/HGIN | 6/18 |
Cancer, M/SM1 | 15/3 |
- Citation: Li B, Cai SL, Tan WM, Li JC, Yalikong A, Feng XS, Yu HH, Lu PX, Feng Z, Yao LQ, Zhou PH, Yan B, Zhong YS. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. World J Gastroenterol 2021; 27(3): 281-293
- URL: https://www.wjgnet.com/1007-9327/full/v27/i3/281.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i3.281