Copyright
©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Ref. | Study design | Algorithm type | Dataset | Results |
André et al[58] | Diagnostic model development | CAD using content based image retrieval (CBIR) approach | 135 polyps from 71 patients | Accuracy: 89.6% |
Sensitivity 92.5% | ||||
Specificity 83.3% | ||||
Ştefănescu et al[59] | Diagnostic model development | CAD using NAVICAD and a two layer CNN | 1035 endomicroscopy images including 725 for training, 155 for validation, and 155 for testing. | Testing decision accuracy error rate of 15.48% (24 out of 155 images) |
Taunk et al[60] | Feasibility study | CAD using expectation-maximization algorithm | 189 endomicroscopy images from 26 patient | Accuracy: 94.2% |
Sensitivity 94.8% | ||||
Specificity 93.5% |
- Citation: Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27(29): 4802-4817
- URL: https://www.wjgnet.com/1007-9327/full/v27/i29/4802.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i29.4802