Copyright
©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Ref. | Study design | Algorithm type | Dataset | Results |
Mori et al[54] | Pilot study | CAD using EC-CAD | 176 colorectal polyps from 152 patients | Accuracy: 89.2% |
Sensitivity: 92% | ||||
Specificity 79.5% | ||||
Takeda et al[55] | Retrospective study | CAD using EC-CAD | 5543 endocytoscopy images for machine learning. 200 test images | Overall |
Accuracy: 94% | ||||
Sensitivity: 89.4% | ||||
Specificity: 98.9% | ||||
PPV: 98.8% | ||||
NPV: 90.1% | ||||
High-confidence diagnosis | ||||
Accuracy: 99.3% | ||||
Sensitivity: 98.1% | ||||
Specificity: 100% | ||||
PPV: 100% | ||||
NPV: 98.8% | ||||
Mori et al[33] | Single-group, open-label, prospective study | Real-time CAD during colonoscopy | 466 diminutive polyps from 325 patients | Accuracy: 98.1% |
Sensitivity 93.8% | ||||
Specificity 90.3% | ||||
PPV 94.1% | ||||
NPV 89.8% | ||||
Kudo et al[56] | Retrospective study | CAD using EndoBRAIN | 100 polyps from 89 patients | Accuracy: 98% |
Sensitivity 96.9% | ||||
Specificity 100% | ||||
PPV 100% | ||||
NPV 94.6% |
- Citation: Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27(29): 4802-4817
- URL: https://www.wjgnet.com/1007-9327/full/v27/i29/4802.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i29.4802