Copyright
©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Table 6 Magnifying chromoendoscopy
Ref. | Study design | Algorithm type | Dataset | Results |
Takemura et al[51] | Partially blinded retrospective study | CAD using HuPAS | 134 pit pattern images | Accuracy: 98.5% |
Häfner et al[52] | Partially blinded retrospective study | CAD using Dual-Tree Complex Wavelet Transform | 484 RGB pit pattern images | Accuracy: 99.59% |
Qi et al[53] | Diagnostic model development | CAD using automated imaged analysis | 79 colon samples (14 normal, 44 normal tissue adjacent to cancer, 21 malignant) | Automated segmentation achieved precision ratio of 0.69 and match ratio of 0.73 |
- Citation: Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27(29): 4802-4817
- URL: https://www.wjgnet.com/1007-9327/full/v27/i29/4802.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i29.4802