Copyright
©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Ref. | Study design | Algorithm type | Dataset | Results |
Karkanis et al[8] | Retrospective | CADe (Wavelet Decomposition) | 180 images | Sensitivity: 93.6% |
Specificity: 99.3% | ||||
Urban et al[2] | Retrospective | CADe (DCNN) | 8461 images &20 colonoscopy videos | Accuracy: 96.4% |
False Positive: 7% | ||||
Klare et al[12] | ProspectiveIn vivo | CADe | 55 colonoscopies | ADR of: CAD 29.1% and Endoscopist 30.9% |
Wang et al[5] | Non-blinded RCT | CADe using Shanghai Wision Al Co. Ltd. (DCNN) | Randomized 522 patients to CADe and 536 to control group | ADR of CAD 29.1% vs control 20.3% |
Wang et al[4] | Double blinded RCT | CADe using EndoScreener (DCNN) | Randomized 484 patients to CAD and 478 to sham system | ADR of CAD 34% vs control 28% |
Gong et al[13] | Partially blinded RCT | CADe using ENDOANGEL (DCNN) | Randomized 355 patients to CAD and 349 to control | ADR of CAD 16% vs control 8% |
Repici et al[14] | Partially-blinded RCT | CADe using GI-Genius (CNN) | Randomized 341 patients to CAD and 344 to control | ADR of CAD 54.8% vs control 40.4% |
Liu et al[15] | Non-blinded RCT | CADe using Henan Xuanweitang Medical Information Technology Co. Ltd (convolutional 3D network) | Randomized 508 patients to CAD and 518 control | ADR of CAD 39% vs control 23% |
Su et al[16] | Partially blinded RCT | Automatic quality control system (ACQS)(DCNN) | Randomized 308 patients to AQCS and 315 to control | ADR of AQCS 28.9% vs control 16.5% |
- Citation: Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27(29): 4802-4817
- URL: https://www.wjgnet.com/1007-9327/full/v27/i29/4802.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i29.4802