Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Table 1 Colorectal polyp detection
Ref.
Study design
Algorithm type
Dataset
Results
Karkanis et al[8]RetrospectiveCADe (Wavelet Decomposition)180 imagesSensitivity: 93.6%
Specificity: 99.3%
Urban et al[2]RetrospectiveCADe (DCNN)8461 images &20 colonoscopy videosAccuracy: 96.4%
False Positive: 7%
Klare et al[12]ProspectiveIn vivoCADe 55 colonoscopiesADR of: CAD 29.1% and Endoscopist 30.9%
Wang et al[5]Non-blinded RCTCADe using Shanghai Wision Al Co. Ltd. (DCNN)Randomized 522 patients to CADe and 536 to control groupADR of CAD 29.1% vs control 20.3%
Wang et al[4]Double blinded RCTCADe using EndoScreener (DCNN)Randomized 484 patients to CAD and 478 to sham systemADR of CAD 34% vs control 28%
Gong et al[13]Partially blinded RCTCADe using ENDOANGEL (DCNN)Randomized 355 patients to CAD and 349 to controlADR of CAD 16% vs control 8%
Repici et al[14] Partially-blinded RCTCADe using GI-Genius (CNN)Randomized 341 patients to CAD and 344 to controlADR of CAD 54.8% vs control 40.4%
Liu et al[15]Non-blinded RCTCADe using Henan Xuanweitang Medical Information Technology Co. Ltd (convolutional 3D network)Randomized 508 patients to CAD and 518 controlADR of CAD 39% vs control 23%
Su et al[16]Partially blinded RCTAutomatic quality control system (ACQS)(DCNN)Randomized 308 patients to AQCS and 315 to controlADR of AQCS 28.9% vs control 16.5%