Copyright
©The Author(s) 2021.
World J Gastroenterol. Jul 7, 2021; 27(25): 3734-3747
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Ref. | Diagnostic method | AI technology | Training set | Testing set | Outcomes |
Inoue et al[88] | EGD | CNN | 531 images | 1080 images | Accuracy: 94.7%-100% |
Liu et al[90] | CE | SVM | 89 patients | - | Sen: 97.8%, Spe: 96.7% |
Vieira et al[89,91] | CE | SVM | 29 patients (936 images) | - | This SVM outperforms others by more than 5% |
Barbosa et al[93] | CE | CNN | Ep: 104, Cp: 100 | Ep: 92, Cp: 100 | Sen: 98.7%, Spe: 96.6% |
Panarelli et al[94] | MicroRNA sequencing | ML | 84 samples | - | Accuracy (Ts: 98.5%, Vs: 94.4%) |
Drozdov et al[95] | Gene expression profiling | ML | 73 samples | - | Differentiated from normal cells (Sen: 100%, Spe: 92%), metastases prediction (Sen: 100%, Spe: 100%) |
Kjellman et al[96] | Plasma protein multibiomarker | Random forestmodel | Ep:135, Cp: 143 | - | AUCs: 0.97 |
Yan et al[97] | CT | Random forestmodel | 213 patients | - | AUCs: 0.943 |
- Citation: Yang Y, Li YX, Yao RQ, Du XH, Ren C. Artificial intelligence in small intestinal diseases: Application and prospects. World J Gastroenterol 2021; 27(25): 3734-3747
- URL: https://www.wjgnet.com/1007-9327/full/v27/i25/3734.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i25.3734