Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Jul 7, 2021; 27(25): 3734-3747
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Table 2 Applications of artificial intelligence in celiac disease
Ref.
Diagnostic method
AI technology
Training set
Testing set
Outcomes
Chetcuti et al[62]CEML81 patients - Accuracy: 75.3%
Li et al[63]CEComputer-assisted recognitionEp: 240, Cp: 220 - Accuracy: 93.9%
Vicnesh et al[64]CEComputerized algorithm21 patients - Accuracy: 89.82%
Zhou et al[65]CECNNEp: 6, Cp: 5Ep: 5, Cp: 5Accuracy: 100%
Gadermayr et al[59]EGDComputer-assisted290 patients (2835 images) - Accuracy: 94%-100%
Das et al[67]Mucosal biopsiesComputer-assistedEp: 124, Cp: 137Ep: 120, Cp: 105Sen: 90.3%, Spe: 93.5%, AUCs: 96.2%
Wei et al[66]Mucosal biopsiesDL212 images - Accuracy: 95.3%, AUCs > 0.95
Pastore et al[70]Clinical dataComputer-assisted100 patients - Reliability: 0.813
Tenório et al[60]Clinical dataDecision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines, artificial neural networks178 patients38 patientsAccuracy: 80.0%, Sen: 0.78, Spe: 0.80, AUCs: 0.84
Virta et al[68]Micro-CTComputer-assisted point cloud analysis81 patients - Accuracy: 100%
Sangineto et al[69]Gene expression in PBMCsML, random forest algorithmEp: 17, Cp: 20 - Accuracy: 100%