Copyright
©The Author(s) 2021.
World J Gastroenterol. Jul 7, 2021; 27(25): 3734-3747
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Ref. | Diagnostic method | AI technology | Training set | Validating set | Outcomes |
Tong et al[11] | CT | ML | 90 images | - | DSC of duodenum: 69.26% |
Kim et al[9] | CT | CNN | 80 images | 40 images | DSC of duodenum: 0.595 |
Peng et al[10] | CT | CNN | 43 images | - | DSC of duodenum: 0.61 |
Fu et al[12] | MRI | CNN | 100 images | 20 images | Dice coefficient of duodenum: 65.50% ± 8.90% |
Dice coefficient of bowel: 86.60% ± 2.69% | |||||
Chen et al[13] | MRI | DL | 66 images | 36 images | DSC of duodenum: 0.80 |
Takiyama et al[15] | EGD | CNN | 27335 images | 17081 images | AUCs: 0.99 |
Igarashi et al[16] | EGD | ML | 49174 images | 36072 images | Accuracy (Ts: 0.993, Vs: 0.965) |
- Citation: Yang Y, Li YX, Yao RQ, Du XH, Ren C. Artificial intelligence in small intestinal diseases: Application and prospects. World J Gastroenterol 2021; 27(25): 3734-3747
- URL: https://www.wjgnet.com/1007-9327/full/v27/i25/3734.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i25.3734