Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Jun 14, 2021; 27(22): 2979-2993
Published online Jun 14, 2021. doi: 10.3748/wjg.v27.i22.2979
Table 2 Summary of artificial intelligence applications in prediction of invasion depth and differentiation of cancerous areas from noncancerous areas
Ref.
Application
Endoscopic modality
Training dataset
Validation dataset
Accuracy
Sensitivity
Specificity
PPV
NPV
Kubota et al[98], 2012Prediction of invasion depthWLI344 patients, 902 images-77.2 (T1)--80.1 (T1)
Miyaki et al[137], 2013Differentiation of cancerous areas from noncancerous areasWLI and magnified FICE493 images46 images85.984.887.086.785.1
Hirasawa et al[99], 2018Differentiation of cancerous areas from noncancerous areasWLI13584 images2296 images, 69 patients92.292.2-30.6-
Kanesaka et al[138], 2018Detection of EGCMagnified NBI126 images81 images96.396.795.098.3-
Horiuchi et al[103], 2020Differentiation of EGC from gastritisMagnified NBI2570 images258 images85.395.471.082.391.7
Yoon et al[101], 2019Detection of EGC and prediction of EGC invasion depthWLI11686 images, 800 patients-79.277.879.377.7
Horiuchi et al[105], 2020Detection of EGCMagnified NBI2570 images174 videos, 82 patients85.187.482.883.586.7
Li et al[139], 2020Differentiation of EGC from noncancerous lesionsMagnified NBI2088 images342 images90.991.290.690.691.2
Nagao et al[102], 2020Prediction of invasion depthWLI, nonmagnifying NBI and indigo-carmine dye contrast imaging (Indigo)16557 images, 1084 patients-94.489.298.798.391.7
Namikawa et al[104], 2020Differentiation of cancerous areas from noncancerous areasWLI, nonmagnifying NBI and indigo-carmine dye contrast imaging (Indigo)18410 images1459 images95.999.093.392.5-