Copyright
©The Author(s) 2021.
World J Gastroenterol. Jun 14, 2021; 27(22): 2979-2993
Published online Jun 14, 2021. doi: 10.3748/wjg.v27.i22.2979
Published online Jun 14, 2021. doi: 10.3748/wjg.v27.i22.2979
Ref. | Endoscopic modality | Training dataset | Validation dataset | Accuracy | Sensitivity | Specificity | PPV |
Huang et al[78], 2004 | WLI | 30 patients | 74 patients | 85.1 (avg)1 | 78.8 (avg) | 90.2 (avg) | - |
Shichijo et al[79], 2017 | WLI | 32208 images, 1768 patients | 11481 images, 397 patients | 87.7 | 88.9 | 87.4 | - |
Itoh et al[81], 2018 | WLI | 149 images, 139 patients | 30 images, 30 patients | - | 86.7 | 86.7 | - |
Nakashima et al[84], 2018 | WLI, BLI and LCI | 162 patients | 60 patients | - | 96.7 | - | - |
Shichijo et al[80], 2019 | WLI | 98564 images, 4494 patients | 23699 images, 847 patients | Infected: 66.0; post-eradication: 86.0 | - | - | - |
Zheng et al[82], 2019 | WLI | 11729 images, 1507 patients | 3755 images, 452 patients | 84.5 | 81.4 | 90.1 | - |
Zhu et al[100], 2019 | WLI | 790 images | 203 images | 89.2 | 76.5 | 95.6 | 89.7 |
Nakashima et al[85], 2020 | WLI, BLI and LCI | 12887 images, 395 patients | 120 patients | 80.0 (avg)2 | 61.3 (avg) | 89.4 (avg) | 74.7 (avg) |
- Citation: Hsiao YJ, Wen YC, Lai WY, Lin YY, Yang YP, Chien Y, Yarmishyn AA, Hwang DK, Lin TC, Chang YC, Lin TY, Chang KJ, Chiou SH, Jheng YC. Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer. World J Gastroenterol 2021; 27(22): 2979-2993
- URL: https://www.wjgnet.com/1007-9327/full/v27/i22/2979.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i22.2979