Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Jun 14, 2021; 27(22): 2979-2993
Published online Jun 14, 2021. doi: 10.3748/wjg.v27.i22.2979
Table 1 Summary of artificial intelligence applications in predicting Helicobacter pylori infection
Ref.
Endoscopic modality
Training dataset
Validation dataset
Accuracy
Sensitivity
Specificity
PPV
Huang et al[78], 2004 WLI30 patients74 patients85.1 (avg)178.8 (avg)90.2 (avg)-
Shichijo et al[79], 2017WLI32208 images, 1768 patients11481 images, 397 patients87.788.987.4-
Itoh et al[81], 2018WLI149 images, 139 patients30 images, 30 patients-86.786.7-
Nakashima et al[84], 2018WLI, BLI and LCI162 patients60 patients-96.7--
Shichijo et al[80], 2019WLI98564 images, 4494 patients23699 images, 847 patientsInfected: 66.0; post-eradication: 86.0---
Zheng et al[82], 2019WLI11729 images, 1507 patients3755 images, 452 patients84.581.490.1-
Zhu et al[100], 2019WLI790 images203 images89.276.595.689.7
Nakashima et al[85], 2020WLI, BLI and LCI12887 images, 395 patients120 patients80.0 (avg)261.3 (avg)89.4 (avg)74.7 (avg)