Copyright
©The Author(s) 2021.
World J Gastroenterol. Jun 7, 2021; 27(21): 2850-2870
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2850
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2850
Figure 7 Enrichment of cytochromes P450 family members involved in drug and xenobiotics metabolism in the downregulated transcriptome of severe coronavirus disease 2019 patients liver tissues.
A: Box plot representation of some of the significantly downregulated cytochrome P450 family members; B: Kegg pathway representations of the suppressive effect of severe acute respiratory syndrome coronavirus 2 infection in liver on xenobiotic and drug metabolism through cytochrome P450 and other enzymes. Data presented as mean ± SE; aP < 0.05, bP < 0.01, cP < 0.001, dP < 0.0005, eP < 0.0001 coronavirus disease 2019 (COVID-19) vs Healthy. CYP39A1: Cytochrome P450 family 39 subfamily A member 1; CYP11A1: Cytochrome P450 family 11 subfamily A member 1; CYP4X1: Cytochrome P450 family 4 subfamily X member 1; CYP2U1: Cytochrome P450 family 2 subfamily U member 1; CYP1A2: Cytochrome P450 family 1 subfamily A member 2.
- Citation: Hammoudeh SM, Hammoudeh AM, Bhamidimarri PM, Mahboub B, Halwani R, Hamid Q, Rahmani M, Hamoudi R. Insight into molecular mechanisms underlying hepatic dysfunction in severe COVID-19 patients using systems biology. World J Gastroenterol 2021; 27(21): 2850-2870
- URL: https://www.wjgnet.com/1007-9327/full/v27/i21/2850.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i21.2850