Copyright
©The Author(s) 2021.
World J Gastroenterol. Jun 7, 2021; 27(21): 2818-2833
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2818
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2818
Ref. | Task | No. of cases/data set | Machine learning method | Performance |
Xu et al[38] | Tumor classification: 6 classes (NL/ADC/MC/SC/PC/CCTA) | 717 patches | AlexNet | Accuracy (97.5%) |
Awan et al[87] | Tumor classification: Normal/Low-grade cancer/High-grade cancer | 454 cases | Neural networks | Accuracy (97%, for 2-class; 91%, for 3-class) |
Haj-Hassan et al[37] | Tumor classification: 3 classes (NL/AD/ADC) | 30 multispectral image patches | CNN | Accuracy (99.2%) |
Kainz et al[88] | Tumor classification: Benign/Malignant | 165 images | CNN (LeNet-5) | Accuracy (95%-98%) |
Korbar et al[36] | Tumor classification: 6 classes (NL/HP/SSP/TSA/TA/TVA-VA) | 697 cases | ResNet | Accuracy (93.0%) |
Yoshida et al[35] | Tumor classification | 1328 colorectal biopsy WSIs | ML | Accuracy (90.1%, adenoma) |
Alom et al[89] | Tumor microenvironment analysis: Classification, Segmentation and Detection | 21135 patches | DCRN/R2U-Net | Accuracy (91.1%, classification) |
Bychkov et al[42] | Prediction of colorectal cancer outcome (5-yr disease-specific survival). | 420 cases | Recurrent neural networks | HR of 2.3, AUC (0.69) |
Weis et al[90] | Evaluation of tumor budding | 401 cases | CNN | Correlation R (0.86) |
Ponzio et al[91] | Tumor classification: 3 classes (NL/AD/ADC) | 27 WSIs (13500 patches) | VGG16 | Accuracy (96 %) |
Kather et al[34] | Tumor classification: 2 classes (NL/Tumor) | 94 WSIs | ResNet18 | AUC (> 0.99) |
Kather et al[34] | Prediction of microsatellite instability | 360 TCGA- DX (93408 patches), 378 TCGA- KR (60894 patches) | ResNet18 | AUC: TCGA-DX—(0.77, TCGA-DX; 0.84, TCGA-KR) |
Kather et al[26] | Tumor microenvironment analysis: classification of 9 cell types | 86 WSIs (100000) | VGG19 | Accuracy (94%-99%) |
Kather et al[26] | Prognosis predictions | 1296 WSIs | VGG19 | Accuracy (94%-99%) |
Kather et al[26] | Prognosis prediction | 934 cases | Deep learning (comparison of 5 networks) | HR for overall survival of 1.99 (training set) and 1.63 (test set) |
Geessink et al[29] | Prognosis prediction, quantification of intratumoral stroma | 129 cases | Neural networks | HRs of 2.04 for disease-free survival |
Sena et al[40] | Tumor classification: 4 classes (NL/HP/AD/ADC) | 393 WSIs (12,565 patches) | CNN | Accuracy (80%) |
Shapcott et al[92] | Tumor microenvironment analysis: detection and classification | 853 patches and 142 TCGA images | CNN with a grid-based attention network | Accuracy (84%, training set; 65%, test set) |
Sirinukunwattana et al[31] | Prediction of consensus molecular subtypes of colorectal cancer | 1206 cases | Neural networks with domain-adversarial learning | AUC (0.84 and 0.95 in the two validation sets) |
Swiderska-Chadaj et al[93] | Tumor Microenvironment Analysis: Detection of immune cell, CD3+, CD8+ | 28 WSIs | FCN/LSM/U-Net | Sensitivity (74.0%) |
Yoon et al[39] | Tumor classification: 2 classes (NL/Tumor) | 57 WSIs (10280 patches) | VGG | Accuracy (93.5%) |
Echle et al[46] | Prediction of microsatellite instability | 8836 cases | ShuffleNet Deep learning | AUC (0.92 in development cohort; 0.96 in validation cohort) |
Iizuka et al[22] | Tumor classification: 3 classes (NL/AD/ADC) | 4036 WSIs | CNN/RNN | AUCs (0.96, ADC; 0.99, AD) |
Skrede et al[28] | Prognosis predictions | 2022 cases | Neural networks with multiple instance learning | HR (3.04 after adjusting for established prognostic markers) |
- Citation: Yoshida H, Kiyuna T. Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology. World J Gastroenterol 2021; 27(21): 2818-2833
- URL: https://www.wjgnet.com/1007-9327/full/v27/i21/2818.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i21.2818