Copyright
©The Author(s) 2021.
World J Gastroenterol. Jun 7, 2021; 27(21): 2818-2833
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2818
Published online Jun 7, 2021. doi: 10.3748/wjg.v27.i21.2818
Ref. | Task | No. of cases/data set | Machine learning method | Performance |
Bollschweiler et al[79] | Prognosis prediction | 135 cases | ANN | Accuracy (93%) |
Duraipandian et al[80] | Tumor classification | 700 slides | GastricNet | Accuracy (100%) |
Cosatto et al[65] | Tumor classification | > 12000 WSIs | MIL | AUC (0.96) |
Sharma et al[21] | Tumor classification | 454 cases | CNN | Accuracy (69% for cancer classification), accuracy (81% for necrosis detection) |
Jiang et al[81] | Prognosis prediction | 786 cases | SVM classifier | AUCs (up to 0.83) |
Qu et al[82] | Tumor classification | 9720 images | DL | AUCs (up to 0.97) |
Yoshida et al[23] | Tumor classification | 3062 gastric biopsy specimens | ML | Overall concordance rate (55.6%) |
Kather et al[34] | Prediction of microsatellite instability | 1147 cases (gastric and colorectal cancer) | Deep residual learning | AUC (0.81 for gastric cancer; 0.84 for colorectal cancer) |
Garcia et al[30] | Tumor classification | 3257 images | CNN | Accuracy (96.9%) |
León et al[83] | Tumor classification | 40 images | CNN | Accuracy (up to 89.7%) |
Fu et al[32] | Prediction of genomic alterations, gene expression profiling, and immune infiltration | > 1000 cases (gastric, colorectal, esophageal, and liver cancers) | Neural networks. | AUC (0.9) for BRAF mutations prediction in thyroid cancers |
Liang et al[84] | Tumor classification | 1900 images | DL | Accuracy (91.1%) |
Sun et al[85] | Tumor classification | 500 images | DL | Accuracy (91.6%) |
Tomita et al[24] | Tumor classification | 502 cases (esophageal adenocarcinoma and Barret esophagus) | Attention-based deep learning | Accuracy (83%) |
Wang et al[86] | Tumor classification | 608 images | Recalibrated multi-instance deep learning | Accuracy (86.5%) |
Iizuka et al[22] | Tumor classification | 1746 biopsy WSIs | CNN, RNN | AUCs (up to 0.98), accuracy (95.6%) |
Kather et al[33] | Prediction of genetic alterations and gene expression signatures | > 1000 cases (gastric, colorectal, and pancreatic cancer) | Neural networks | AUC (up to 0.8) |
- Citation: Yoshida H, Kiyuna T. Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology. World J Gastroenterol 2021; 27(21): 2818-2833
- URL: https://www.wjgnet.com/1007-9327/full/v27/i21/2818.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i21.2818