Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. May 28, 2021; 27(20): 2531-2544
Published online May 28, 2021. doi: 10.3748/wjg.v27.i20.2531
Table 2 Summary of studies using deep learning for detection of gastric precancerous lesions
Ref.
Year
Imaging
Study design
Study aim
DL model
Dataset
Outcomes
Shichijo et al[47]2017WLERetrospectiveDiagnosis of H. pylori infectionGoogLeNet43689 imagesSensitivity: 88.9%; Specificity: 87.4%; Accuracy: 87.7%
Itoh et al[48]2018WLERetrospectiveAnalysis of H. pylori infectionGoogLeNet179 imagesSensitivity: 86.7%; Specificity: 86.7%
Zheng et al[49]2019WLERetrospectiveEvaluation of H. pylori infection statusResNet-5015484 imagesSensitivity: 91.6%; Specificity: 98.6%; Accuracy: 93.8%
Nakashima et al[50]2018BLI-bright, LCIProspectivePrediction of H. pylori infection statusGoogLeNet666 imagesSensitivity: 96.7%; Specificity: 86.7%
Nakashima et al[51]2020WLE, LCIProspectiveDiagnosis of H. pylori infection--13127 imagesFor currently infected patients, the sensitivity and specificity are 62.5% and 92.5%, respectively
Guimarães et al[53]2020WLERetrospectiveDiagnosis of atrophic gastritisVGG16270 imagesAccuracy: 93%
Zhang et al[54]2020 WLERetrospectiveDiagnosis of atrophic gastritisDenseNet1215470 imagesSensitivity: 94.5%; Specificity: 94.0%; Accuracy: 94.2%
Horiuchi et al[55] 2020M-NBIRetrospectiveDifferentiation between early gastric cancer and gastritisGoogLeNet2826 imagesSensitivity: 95.4%; Specificity: 71.0%; Accuracy: 85.3%
Wang et al[57]2019 WLERetrospectiveLocalization and identification of GIMDeepLab V.3+200 imagesAccuracy: 89.51%
Zheng et al[58]2020WLERetrospectiveDetection of atrophic gastritis and GIM ResNet-503759 imagesSensitivity for atrophic gastritis: 87.2%; Specificity for atrophic gastritis: 91.1%; Sensitivity for GIM: 90.3%; Specificity for GIM: 93.7%
Yan et al[18]2020NBI, M-NBIRetrospectiveDiagnosis of GIMEfficientNetB42357 imagesSensitivity: 91.9%; Specificity: 86.0%; Accuracy: 88.8%
Cho et al[60]2019 WLEProspectiveClassification of multiclass gastric neoplasmsInception-Resnet-v25217 images Accuracy: 84.6%
Inoue et al[61]2020WLE, NBIRetrospectiveDetection of duodenal adenomas and high-grade dysplasiasSingle-Shot Multibox Detector1511 imagesFor high-grade dysplasia, the sensitivity and specificity are all 100%
Lui et al[62]2020NBIRetrospectiveClassification of gastric lesionsResNet3000 imagesSensitivity: 97.1%; Specificity: 85.9%; Accuracy: 91.0%