Copyright
©The Author(s) 2021.
World J Gastroenterol. Apr 28, 2021; 27(16): 1664-1690
Published online Apr 28, 2021. doi: 10.3748/wjg.v27.i16.1664
Published online Apr 28, 2021. doi: 10.3748/wjg.v27.i16.1664
Table 3 Summary of key studies on artificial intelligence-assisted pathology in the gastroenterology and hepatology fields
Ref. | Country | Disease studied | Design of study | Application | Number of cases | Type of machine learning algorithm | Outcomes (%) | |
Accuracy | Sensitivity/Specificity | |||||||
Basic AI-based pathology: diagnosis | ||||||||
Tomita et al[118], 2019 | United States | BE and EAC | Retrospective | Detection and classification of cancerous and precancerous esophagus tissue | Training: 379 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma; Testing: 123 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma | CNNs | Mean: 83; BE-no-dysplasia: 85; BE-with-dysplasia: 89; Adenocarcinoma: 88 | Normal: 69/71 BE-no-dysplasia: 77/88; BE-with-dysplasia: 21/97; Adenocarcinoma: 71/91 |
Sharma et al[119], 2017 | Germany | GC | Retrospective | Classification and necrosis detection of GC | 454 patients (6810 WSIs: 4994 for cancer classification and 1816 for necrosis detection) (HER2 immunohistochemical stain and HE stained) | CNNs | Cancer classification: 69.90; Necrosis detection: 81.44 | NA/NA |
Li et al[120], 2018 | China | GC | Retrospective | Detection of GC | 700 images: 560 GC and 140 normal (HE stained) | CNNs | 100 | NA/NA |
Leon et al[121], 2019 | Colombia | GC | Retrospective | Detection of GC | 40 images: 20 benign and 20 malignant | CNNs | 89.72 | NA/NA |
Sun et al[122], 2019 | China | GC | Retrospective | Diagnosis of GC | 500 WSIs of gastric areas with typical cancerous regions | DNNs | 91.6 | NA/NA |
Ma et al[123], 2020 | China | GC | Retrospective | Classification of lesions in the gastric mucosa | Training: 534 WSIs (1616713 images: 544925 normal, 544624 chronic gastritis, and 527164 cancer) (HE stained) Testing: 153 WSIs (399240 images: 135446 normal, 125783 chronic gastritis, and 138011 cancer) (HE stained) | CNNs, RF | Benign and cancer: 98.4; Normal, chronic gastritis, and GC: 94.5 | Benign and cancer: 98.0/98.9; Normal, chronic gastritis, and GC: NA/NA |
Yoshida et al[124], 2018 | Japan | Gastric lesions | Retrospective | Classification of gastric biopsy specimens | 3062 gastric biopsy specimens (HE stained) | CNNs | 55.6 | 89.5/50.7 |
Qu et al[125], 2018 | Japan | Gastric lesions | Retrospective | Classification of gastric pathology images | Training: 1080 patches: 540 benign and 540 malignant; Testing: 5400 patches: 2700 benign and 2700 malignant | CNNs | 96.5 | NA/NA |
Iizuka et al[126], 2020 | Japan | Gastric and colonic epithelial tumors | Retrospective | Classification of gastric and colonic epithelial tumors | 4128 cases of human gastric epithelial lesions and 4036 of colonic epithelial lesions (HE stained) | CNNs, RNNs | Gastric adenocarcinoma: 97; Gastric adenoma: 99; Colonic adenocarcinoma: 96; Colonic adenoma: 99 | NA/NA |
Korbar et al[127], 2017 | United States | Colorectal polyps | Retrospective | Classification of different types of colorectal polyps on WSIs | Training: 458 WSIs; Testing: 239 WSIs | A modified version of a residual network | 93 | 88.3/NA |
Wei et al[128], 2020 | United States | Colorectal polyps | Retrospective | Classification of colorectal polyps on WSIs | Training: 326 slides with colorectal polyps: 37 tubular, 30 tubulovillous or villous, 111 hyperplastic, 140 sessile serrated, and 8 normal; Testing: 238 slides with colorectal polyps: 95 tubular, 78 tubulovillous or villous, 41 hyperplastic, and 24 sessile serrated | CNNs | Tubular: 84.5; Tubulovillous or villous: 89.5; Hyperplastic: 85.3; Sessile serrated: 88.7 | Tubular: 73.7/91.6; Tubulovillous or villous: 97.6/87.8; Hyperplastic: 60.3/97.5; Sessile serrated: 79.2/89.7 |
Shapcott et al[129], 2018 | UnitedKingdom | CRC | Retrospective | Diagnosis of CRC | 853 hand-marked images | CNNs | 84 | NA/NA |
Geessink et al[130], 2019 | Netherlands | CRC | Retrospective | Quantification of intratumoral stroma in CRC | 129 patients with CRC | CNNs | 94.6 | 91.1/99.4 |
Song et al[131], 2020 | China | CRC | Retrospective | Diagnosis of CRC | Training: 177 slides: 156 adenoma and 21 non-neoplasm; Testing: 362 slides: 167 adenoma and 195 non-neoplasm | CNNs | 90.4 | 89.3/79.0 |
Wang et al[132], 2015 | China | Hepatic fibrosis | Retrospective | Assessment of HBV-related liver fibrosis and detection of liver cirrhosis | Training: 105 HBV patients; Testing: 70 HBV patients | SVM | 82 | NA/NA |
Forlano et al[133], 2020 | UnitedKingdom | MAFLD | Retrospective | Detection and quantification of histological features of MAFLD | Training: 100 MAFLD patients; Testing: 146 MAFLD patients | K-means | Steatosis: 97; Inflammation: 96; Ballooning: 94; Fibrosis: 92 | NA/NA |
Li et al[134], 2017 | China | HCC | Retrospective | Nuclei grading of HCC | 4017 HCC nuclei patches | CNNs | 96.7 | G1: 94.3/97.5; G2: 96.0/97.0;G3: 97.1/96.6; G4: 99.5/95.8 |
Kiani et al[135], 2020 | United States | Liver cancer (HCC and CC) | Retrospective | Histopathologic classification of liver cancer | Training: 70 WSIs: 35 HCC and 35 CC Testing: 80 WSIs: 40 HCC and 40 CC | SVM | 84.2 | 72/95 |
Advanced AI-based pathology: prediction of gene mutations and prognosis | ||||||||
Steinbuss et al[136], 2020 | Germany | Gastritis | Retrospective | Identification of gastritis subtypes | Training: 92 patients (825 images: 398 low inflammation, 305 severe inflammation, and 122 A gastritis) (HE stained) Testing: 22 patients (209 images: 122 low inflammation, 38 severe inflammation, and 49 A gastritis) (HE stained) | CNNs | 84 | A gastritis: 88/89; B gastritis: 100/93; C gastritis: 83/100 |
Liu et al[137], 2020 | China | Gastrointestinal neuroendocrine tumor | Retrospective | Prediction of Ki-67 positive cells | 12 patients (18762 images: 5900 positive cells, 6086 positive cells, and 6776 background from ROIs) (HE and IHC stained) | CNNs | 97.8 | 97.8/NA |
Kather et al[138], 2019 | Germany | GC and CRC | Retrospective | Prediction of MSI in GC and CRC | Training: 360 patients (93408 tiles); Testing: 378 patients (896530 tiles) | CNNs | 84 | NA/NA |
Bychkov et al[139], 2018 | Finland | CRC | Retrospective | Prediction of CRC outcome | 420 CRC tumor tissue microarray samples | CNNs, RNNs | 69 | NA/NA |
Kather et al[140], 2019 | Germany | CRC | Retrospective | Prediction of survival from CRC histology slides | Training: 86 CRC tissue slides (> 100000 HE image patches); Testing: 25 CRC patients (7180 images) | CNNs | 98.7 | NA/NA |
Echle et al[141], 2020 | Germany | CRC | Retrospective | Detection of dMMR or MSI in CRC | Training: 5500 patients; Testing: 906 patients | A modified shufflenet DL system | 92 | 98/52 |
Skrede et al[142], 2020 | 3R23 Song 2020 | CRC | Retrospective | Prediction of CRC outcome after resection | Training: 828 patients (> 12000000 image tiles); Testing: 920 patients | CNNs | 76 | 52/78 |
Sirinukunwattana et al[143], 2020 | UnitedKingdom | CRC | Retrospective | Identification of consensus molecular subtypes of CRC | Training: 278 patients with CRC; Testing: 574 patients with CRC: 144 biopsies and 430 TCGA | Neural networks with domain-adversarial learning | Biopsies: 85; TCGA: 84 | NA/NA |
Jang et al[144], 2020 | South Korea | CRC | Retrospective | Prediction of gene mutations in CRC | Training: 629 WSIs with CRC (HE stained) Testing: 142 WSIs with CRC (HE stained) | CNNs | 64.8-88.0 | NA/NA |
Chaudhary et al[145], 2018 | United States | HCC | Retrospective | Identification of survival subgroups of HCC | Training: 360 HCC patients’ data using RNA-seq, miRNA-seq and methylation data from TCGA; Testing: 684 HCC patients’ data (LIRI-JP cohort: 230; NCI cohort: 221; Chinese cohort: 166, E-TABM-36 cohort: 40, and Hawaiian cohort: 27) | DL | LIRI-JP cohort: 75; NCI cohort: 67; Chinese cohort: 69; E-TABM-36 cohort: 77; Hawaiian cohort: 82 | NA/NA |
Saillard et al[146], 2020 | France | HCC | Retrospective | Prediction of the survival of HCC patients treated by surgical resection | Training: 206 HCC (390 WSIs); Testing: 328 HCC (342 WSIs) | CNNs (SCHMOWDER and CHOWDER) | SCHMOWDER: 78; CHOWDER: 75 | NA/NA |
Chen et al[11], 2020 | China | HCC | Retrospective | Classification and gene mutation prediction of HCC | Training: 472 WSIs: 383 HCC and 89 normal liver tissue; Testing: 101 WSIs: 67 HCC and 34 normal liver tissue | CNNs | Classification: 96.0; Tumor differentiation: 89.6; Gene mutation: 71-89 | NA/NA |
Fu et al[147], 2020 | UnitedKingdom | EAC, GC, CRC, and liver cancers | Retrospective | Prediction of mutations, tumor composition and prognosis | 17335 HE-stained images of 28 cancer types | CNNs | Variable across tumors/gene alterations | NA/NA |
- Citation: Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27(16): 1664-1690
- URL: https://www.wjgnet.com/1007-9327/full/v27/i16/1664.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i16.1664