Copyright
©The Author(s) 2021.
World J Gastroenterol. Apr 14, 2021; 27(14): 1392-1405
Published online Apr 14, 2021. doi: 10.3748/wjg.v27.i14.1392
Published online Apr 14, 2021. doi: 10.3748/wjg.v27.i14.1392
AI Application | Study design | Data category | Type of Images | AI architecture | Training dataset | Validation Method or dataset | AUC | SEN | SPE | ACC | PPV | NPV | Compared with experts | Ref. |
Detection | Retrospective | Still image | WLI | CAD-SVM | 64 images | LOOCV | NA | 95% | NA | 75% | NA | NA | NA | van der Sommen et al[36], 2014 |
Detection | Retrospective | Still image | WLI | CAD-SVM | 100 Images | LOOCV | NA | 83% (per-image) 86% (per-patient) | 83% (per-image) 87% (per-patient) | NA | NA | NA | Inferior | van der Sommen et al[37], 2016 |
Detection | Retrospective | Still image | VLE | CAD | 60 images | LOOCV | 0.95 | 90% | 93% | NA | NA | NA | Superior | Swager et al[38], 2017 |
Detection | Retrospective | Still image | VLE | CAD | 60 images | LOOCV | 0.90-0.93 | NA | NA | NA | NA | NA | Superior | van der Sommen et al[40], 2018 |
Diagnosis | Retrospective | Still image | WLI/NBI | CNN | 8 patients | Caffe DL framework | NA | 88% (WLI)/88% (NBI) (per-patient) 69% (WLI)/71% (NBI) (per-image) | NA | 90% | NA | NA | NA | Horie et al[21], 2019 |
Detection | Retrospective | Still image | WLE | CNN-SSD | 100 images/39patients | 20% patients/5-fold-CV/LOOCV | NA | 96% | 92% | NA | NA | NA | NA | Ghatwary et al[41], 2019 |
Detection | Retrospective | Still image | WLI/NBI | CNN- Inception-ResNet-v2 | 1832 images | 458 images | NA | 96.4% | 94.2% | 95.4% | NA | NA | NA | Hashimoto et al[42], 2019 |
Detection | Retrospective | Still image | WLI | CAD | 60 images | LOOCV | 0.92 | 95% | 85% | 91.7% | NA | NA | NA | de Groof et al[43], 2019 |
Detection | Retrospective | Still image | WLI | CAD-ResNet-UNet | 1544 images | 4-fold-CV (internal validation)/160 images (external validation) | NA | 87.6% (internal validation) 92.5% (external validation) | 88.6% (internal validation) 82.5% (external validation) | 88.2% (internal validation) 87.5% (external validation) | NA | NA | NA | de Groof et al[44], 2019 |
Diagnosis | Retrospective | Still image | WLI/NBI | CAD-ResNet | 248 images | LOOCV | NA | 97% (WLI)/94% (NBI) (Augsburg data)92% (MICCAI) | 88% (WLI)/80% (NBI) (Augsburg data)100% (MICCAI) | NA | NA | NA | NA | Ebigbo et al[45], 2019 |
Diagnosis | Retrospective | Random images from real-time video | WLI | CAD-ResNet-/DeepLab V.3+ | 129 images | 36 images (real time) | NA | 83.7% | 100% | 89.9% | NA | NA | NA | Ebigbo et al[49], 2020 |
Surveillance | Prospective | Real-time image | WLI/NBI/VLE | IRIS | NA | Real-time image | NA | NA | NA | NA | NA | NA | NA | Trindade et al[50], 2019 |
Detection | Prospective | Live endoscopic procedure | Live endoscopic procedure | CAD-ResNet/U-Net | 1544 images | 48 levels/144 images/20 live endoscopic procedure | NA | 90.9% (per level) 75.8% (per image) 90% (per patient) | 89.2% (per level) 86.5% (per image) 90% (per patient) | 89.6% (per level) 84.0% (per image) 90% (per patient) | NA | NA | NA | de Groof et al[51], 2020 |
- Citation: Liu Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J Gastroenterol 2021; 27(14): 1392-1405
- URL: https://www.wjgnet.com/1007-9327/full/v27/i14/1392.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i14.1392