Copyright
©The Author(s) 2020.
World J Gastroenterol. Oct 21, 2020; 26(39): 5911-5918
Published online Oct 21, 2020. doi: 10.3748/wjg.v26.i39.5911
Published online Oct 21, 2020. doi: 10.3748/wjg.v26.i39.5911
Ref. | Target | System | Performance | Year | Country |
Aihara et al[35] | All polyps (n = 102) | AFE | Sensitivity: 94.2 % Specificity: 88.9% NPV: 85.2% | 2013 | Japan |
Kuiper et al[36] | < 10 mm polyps (n = 207) | WAVSTAT, WAVSTAT + HRE | Accuracy: 74.4% Accuracy + HRE: 79.2% NPV: 73.5% NPV + HRE: 73.9 % | 2015 | Netherlands |
Rath et al[37] | ≤ 5 mm polyps (n = 137) | WAVSTAT4 + LIFS | Accuracy: 84.7% Sensitivity: 81.8% Specificity: 85.2% NPV: 96.1% | 2016 | Germany |
Kominami et al[38] | All polyps (n = 118) | NBI | Concordance: 97.5% Accuracy: 93.2 % Sensitivity: 93% Specificity: 93.3% PPV: 93% NPV: 93.3% | 2016 | Japan |
Mori et al[39] | ≤ 5 mm polyps (n = 466) | EC-NBI-CAD EC-MB-CAD | Accuracy: 98.1% NPV EC-NBI-CAD:96.5% NPV EC-MB-CAD: 96.4% | 2018 | Japan |
- Citation: Sinagra E, Badalamenti M, Maida M, Spadaccini M, Maselli R, Rossi F, Conoscenti G, Raimondo D, Pallio S, Repici A, Anderloni A. Use of artificial intelligence in improving adenoma detection rate during colonoscopy: Might both endoscopists and pathologists be further helped. World J Gastroenterol 2020; 26(39): 5911-5918
- URL: https://www.wjgnet.com/1007-9327/full/v26/i39/5911.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i39.5911