Copyright
©The Author(s) 2020.
World J Gastroenterol. Oct 7, 2020; 26(37): 5606-5616
Published online Oct 7, 2020. doi: 10.3748/wjg.v26.i37.5606
Published online Oct 7, 2020. doi: 10.3748/wjg.v26.i37.5606
Ref. | Country | CAD system | CAD system aim | Number of patients | ADR (%) | ADR (%) | |
WL | CAD | WL | CAD | ||||
Wang et al[15], 2019 | China | EndoScreener | Detection | 536 | 522 | 20.3 | 28.9 |
Wang et al[54], 2020 | China | EndoScreener | Detection | 478 | 484 | 28 | 34.1 |
Gong et al[30], 2020 | China | ENDOANGEL | Quality | 318 | 324 | 8 | 16 |
Repici et al[31], 2020 | Italy | GI-Genius | Detection | 344 | 341 | 40.4 | 54.8 |
Liu et al[28], 2020 | China | Henan Xuanweitang Medical Information technology Co. Ltd. | Detection | 518 | 508 | 23.9 | 39.2 |
Su et al[29], 2020 | China | - | Detection; quality | 315 | 308 | 16.5 | 28.9 |
- Citation: Attardo S, Chandrasekar VT, Spadaccini M, Maselli R, Patel HK, Desai M, Capogreco A, Badalamenti M, Galtieri PA, Pellegatta G, Fugazza A, Carrara S, Anderloni A, Occhipinti P, Hassan C, Sharma P, Repici A. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World J Gastroenterol 2020; 26(37): 5606-5616
- URL: https://www.wjgnet.com/1007-9327/full/v26/i37/5606.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i37.5606