Copyright
©The Author(s) 2020.
World J Gastroenterol. Sep 28, 2020; 26(36): 5408-5419
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Ref. | Year | Country/region | Number of cases | Study population | Methods | Results |
Jiang et al[36] | 2018 | China | 786 cases | Hospital | SVM classifier | AUCs (up to 0.834) |
Lu et al[37] | 2017 | China | 939 patients | Hospital | MMHG | Accuracy (69.28%) |
Korhani Kangi et al[38] | 2018 | Iran | 339 patients | Hospital | ANN, BNN | Sensitivity (88.2% for ANN, 90.3% for BNN), specificity (95.4% for ANN, 90.9% for BNN) |
Zhang et al[39] | 2019 | China | 669 cases | Hospital | ML | AUCs (up to 0.831) |
Liu et al[40] | 2018 | China | 432 GC tissue samples | Hospital | SVM classifier | Accuracy (up to 94.19%) |
Bollschweiler et al[41] | 2004 | Germany, Japan | 135 cases | Cancer center | ANN | Accuracy (93%) |
Hensler et al[42] | 2005 | Germany, Japan | 4302 cases | Cancer center | QUEEN technique | Accuracy (72.73%) |
Jagric et al[43] | 2010 | Slovenia | 213 cases | Clinical center | Learning vector quantization neural networks | Sensitivity (71%), specificity (96.1%) |
- Citation: Niu PH, Zhao LL, Wu HL, Zhao DB, Chen YT. Artificial intelligence in gastric cancer: Application and future perspectives. World J Gastroenterol 2020; 26(36): 5408-5419
- URL: https://www.wjgnet.com/1007-9327/full/v26/i36/5408.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i36.5408