Minireviews
Copyright ©The Author(s) 2020.
World J Gastroenterol. Sep 28, 2020; 26(36): 5408-5419
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Table 4 Applications of artificial intelligence in gastric cancer prognosis based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Jiang et al[36]2018China786 casesHospitalSVM classifierAUCs (up to 0.834)
Lu et al[37]2017China939 patientsHospitalMMHGAccuracy (69.28%)
Korhani Kangi et al[38]2018Iran339 patientsHospitalANN, BNNSensitivity (88.2% for ANN, 90.3% for BNN), specificity (95.4% for ANN, 90.9% for BNN)
Zhang et al[39]2019China669 casesHospitalMLAUCs (up to 0.831)
Liu et al[40]2018China432 GC tissue samplesHospitalSVM classifierAccuracy (up to 94.19%)
Bollschweiler et al[41]2004Germany, Japan135 casesCancer centerANNAccuracy (93%)
Hensler et al[42]2005Germany, Japan4302 casesCancer centerQUEEN techniqueAccuracy (72.73%)
Jagric et al[43]2010Slovenia213 casesClinical centerLearning vector quantization neural networksSensitivity (71%), specificity (96.1%)