Minireviews
Copyright ©The Author(s) 2020.
World J Gastroenterol. Sep 28, 2020; 26(36): 5408-5419
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Table 2 Applications of artificial intelligence in pathology and computerized tomography based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Li et al[22]2018China700 slicesPublicly gastric slice datasetGastricNetAccuracy (100%)
Sharma et al[23]2017Germany454 casesHospitalCNNAccuracy (0.6990 for cancer classification), accuracy (0.8144 for necrosis detection)
Leon et al[24]2019Colombia40 imagesDepartment of pathologyDeep CNNAccuracy (up to 89.72%)
Iizuka et al[25]2020Japan1746 biopsy histopathology WSIsHospital, TCGACNN, RNNAUCs (up to 0.98), accuracy (95.6%)
Yoshida et al[26]2018Japan3062 gastric biopsy specimensCancer centerMLOverall concordance rate (55.6%)
Garcia et al[27]2017Peru3257 images-Deep CNNAccuracy (96.88%)
Liang et al[28]2019China1900 images-DLIoU (0.883), accuracy (91.09%)
Qu et al[29]2018Japan9720 images/19440 imagesHospitalDLAUCs (up to 0.965)
Sun et al[30]2019China500 pathological imagesHospitalDLIoU (0.8265), accuracy (91.60%)
Cao et al[31]2019China1399 pathological sections-the Mask R-CNNAP value (61.2)