Copyright
©The Author(s) 2020.
World J Gastroenterol. Sep 21, 2020; 26(35): 5256-5271
Published online Sep 21, 2020. doi: 10.3748/wjg.v26.i35.5256
Published online Sep 21, 2020. doi: 10.3748/wjg.v26.i35.5256
Table 2 Computer-aided endoscopic diagnosis for early esophageal squamous cell cancer
Ref. | Year | Study design | Lesions | Diagnostic method | AI technology | Dataset capacity | Validation | Outcomes | Compared to expert | Processing speed |
Liu et al[71] | 2016 | Retrospective | Early ESCC | WLI | JDPCA + CCV | 400 images | 10-fold cross-validation | Accuracy: 90.75%; AUC: 0.9471; SEN/SPE: 93.33%/89.2% | NA | NA |
Horie et al[56] | 2019 | Retrospective | ESCC | WLI; NBI | CNN-SSD | 41 pts (train 8428 images; test 1118 images without histology distinction) | Caffe DL framework | Accuracy: 99%; Per-image SEN: 72%/86% ( WLI/NBI, respectively); Per-case SEN: 79%/89% ( WLI/NBI, respectively) | NA | 0.02 s/image |
Cai et al[72] | 2019 | Retrospective | Early ESCC | WLI | DNN | 2615 images (train 2428, test 187) | NA | Accuracy: 91.4%; SEN/SPE: 97.8%/85.4% | Superior | NA |
Zhao et al[74] | 2019 | Retrospective | Early ESCC | ME + NBI | Double labeling FNN | 1350 images with 1383 lesions | 3-fold cross-validation | Accuracy/SEN/SPE at lesion level: 89.2%/87%/84.1%; Accuracy at pixel level: 93% | Comparable | NA |
Ohmori et al[73] | 2020 | Retrospective | Superficial ESCC | ME + NBI/BLI; Non-ME + WLI/NBI/BLI | CNN | 23289 images (train 22562, test 727) | Accuracy/SEN/SPE: 77%/100%/63% (Non-ME + NBI/BLI); 81%/90%76% ( Non-ME + WLI); 77%/98%/56% ( ME) | Comparable | 0.028 s/image | |
Nakagawa et al[76] | 2019 | Retrospective | ESCC (EP-SM1/SM2+SM3) | ME; Non-ME | CNN-SSD | 15252 images (train 14338, test 914) | Caffe DL framework | Accuracy/SEN/SPE: 91%/90.1%/95.8% | Comparable | 0.033 s/image |
Everson et al[77] | 2019 | Retrospective | ESCC IPCLs (type A/type B) | ME + NBI | CNN | 7046 images | 5-fold cross-validation+eCAM | Accuracy/SEN/SPE: 93.3%/89.3%/98% | NA | 0.026-0.037 s/image |
Guo et al[79] | 2020 | Retrospective | Early ESCC | NBI (ME + non-ME) | CNN-SegNet | 13144 images (train 6473, validation 6671), 80 videos (47 lesions, 33 normal esophagus) | NA | Per-image SEN/SPE: 98.04%/95.03%; Per-frame SEN/SPE: 91.5%/99.9% | NA | < 0.04 s/frame; Latency <0.1 s |
Shin et al[82] | 2015 | Retrospective | HGD, ESCC | HRM | Two-class LDA | 375 sites of images (train 104, test 104, validation 167) | NA | AUC: 0.95; SEN/SPE: 84%/95% | NA | 3.5 s/image |
Quang et al[83] | 2016 | Retrospective | ESCC | HRM | A fully automated algorithm | 375 biopsied sites from Shin et al[82] (train 104, test 104, validation 167) | NA | AUC: 0.937; SEN/SPE: 95%/91% | NA | Average 5 s for computing |
- Citation: Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: Now and future. World J Gastroenterol 2020; 26(35): 5256-5271
- URL: https://www.wjgnet.com/1007-9327/full/v26/i35/5256.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i35.5256