Copyright
©The Author(s) 2020.
World J Gastroenterol. Sep 14, 2020; 26(34): 5156-5168
Published online Sep 14, 2020. doi: 10.3748/wjg.v26.i34.5156
Published online Sep 14, 2020. doi: 10.3748/wjg.v26.i34.5156
Dataset | Plain scan | Arterial phase | Venous phase | χ2 value | P value |
Accuracy | 0.820568 | 0.790633 | 0.788076 | 1.074 | 0.585 |
Specificity | 0.985721 | 0.984770 | 0.990305 | 0.577 | 0.749 |
Sensitivity (cancer at the tail/body of pancreas) | 0.520122 | 0.411098 | 0.360272 | 1.841 | 0.398 |
Sensitivity (cancer at the head/neck of pancreas) | 0.462148 | 0.852390 | 0.728743 | 16.651 | < 0.001 |
- Citation: Ma H, Liu ZX, Zhang JJ, Wu FT, Xu CF, Shen Z, Yu CH, Li YM. Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis. World J Gastroenterol 2020; 26(34): 5156-5168
- URL: https://www.wjgnet.com/1007-9327/full/v26/i34/5156.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i34.5156