Copyright
©The Author(s) 2020.
World J Gastroenterol. Aug 14, 2020; 26(30): 4453-4464
Published online Aug 14, 2020. doi: 10.3748/wjg.v26.i30.4453
Published online Aug 14, 2020. doi: 10.3748/wjg.v26.i30.4453
Dataset and algorithm | Number of original variables | Number of encoded variables | Number of samples | Area under curve |
Random forest with complete cases | 38 | 44 | 889 | 0.670.02 |
Neural network with complete cases | 0.740.02 | |||
Random forest with complete variables | 34 | 40 | 1769 | 0.670.01 |
Neural network with complete variables | 0.720.02 | |||
Random forest with missing data treatment | 38 | 44 | 1769 | 0.680.02 |
Neural network with missing data treatment | 0.710.02 |
- Citation: Han IW, Cho K, Ryu Y, Shin SH, Heo JS, Choi DW, Chung MJ, Kwon OC, Cho BH. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World J Gastroenterol 2020; 26(30): 4453-4464
- URL: https://www.wjgnet.com/1007-9327/full/v26/i30/4453.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i30.4453