Copyright
©The Author(s) 2020.
World J Gastroenterol. Jul 7, 2020; 26(25): 3660-3672
Published online Jul 7, 2020. doi: 10.3748/wjg.v26.i25.3660
Published online Jul 7, 2020. doi: 10.3748/wjg.v26.i25.3660
Ground truth | Positive predictive value | |||||
Benign | Metastases | HCCs | Hepatic abscesses | |||
non-inflammatory FLLs | ||||||
Prediction | Benign non-inflammatory FLLs | 25 | 0 | 4 | 2 | 0.806 |
Metastases | 3 | 23 | 2 | 3 | 0.742 | |
HCCs | 3 | 0 | 17 | 0 | 0.85 | |
Hepatic abscesses | 3 | 0 | 0 | 22 | 0.88 | |
Sensitivity | 0.735 | 1 | 0.739 | 0.815 | ||
Specificity | 0.918 | 0.905 | 0.964 | 0.963 | ||
Accuracy | 0.86 | 0.925 | 0.916 | 0.925 | ||
Mean accuracy | 0.813 |
- Citation: Cao SE, Zhang LQ, Kuang SC, Shi WQ, Hu B, Xie SD, Chen YN, Liu H, Chen SM, Jiang T, Ye M, Zhang HX, Wang J. Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography. World J Gastroenterol 2020; 26(25): 3660-3672
- URL: https://www.wjgnet.com/1007-9327/full/v26/i25/3660.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i25.3660