Retrospective Study
Copyright ©The Author(s) 2019.
World J Gastroenterol. Nov 21, 2019; 25(43): 6451-6464
Published online Nov 21, 2019. doi: 10.3748/wjg.v25.i43.6451
Table 3 Comparison of the area under the curve values and Harrell’s C index between the pathological TNM stage, clinical TNM stage, and preoperative artificial neural network
Training set
Testing set
Bio-ANNCli-ANN
Preope-ANNcTNMpTNMPreope-ANNcTNMpTNM
Harrell’s C index0.773 (0.753-0.795)0.663 (0.640-0.687)0.757 (0.735-0.779)0.752 (0.719-0.785)0.652 (0.615-0.688)0.740 (0.707-0.775)0.722 (0.698-0.746)0.760 (0.738-0.782)
P value< 0.0010.120< 0.0010.539aP < 0.001; bP = 0.000; cP = 0.018dP < 0.001 eP < 0.000; fP = 0.827
AIC4977.835176.704999.801952.942020.371951.845115.95011.9
Relative likelihood< 0.001< 0.001<0.0011.733aP < 0.001; bP > 1 cP < 0.001dP = 0.001 E > 1 fP = 0.06

  • Citation: Que SJ, Chen QY, Qing-Zhong, Liu ZY, Wang JB, Lin JX, Lu J, Cao LL, Lin M, Tu RH, Huang ZN, Lin JL, Zheng HL, Li P, Zheng CH, Huang CM, Xie JW. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer. World J Gastroenterol 2019; 25(43): 6451-6464
  • URL: https://www.wjgnet.com/1007-9327/full/v25/i43/6451.htm
  • DOI: https://dx.doi.org/10.3748/wjg.v25.i43.6451